Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
3 Biotech ; 13(12): 393, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37953830

RESUMO

Gangavati sona (GS) is a high-yielding, fine-grain rice variety widely grown in the Tungabhadra command area in Karnataka, India; however, it is susceptible to bacterial blight (BB). Therefore, the present study was conducted to improve the GS variety for BB resistance. Three BB-resistant genes (xa5, xa13, and Xa21) were introgressed into the genetic background of susceptible cultivar GS through marker-assisted backcrossing (MABB) by using Improved samba Mahsuri (ISM), a popular, high-yielding, bacterial blight resistant rice variety as a donor parent. Foreground selection was carried out using gene-specific markers, viz., xa5FM (xa5), xa13prom (xa13), and pTA248 (Xa21), while background selection was carried out using well-distributed 64 polymorphic microsatellite markers. The true heterozygote F1 was used as the male parent for backcrossing with GS to obtain BC1F1. The process was repeated in BC1F1 generation, and a BC2F1 plant (IGS-5-11-5) possessing all three target genes along with maximum recurrent parent genome (RPG) recovery (86.7%) was selfed to obtain BC2F2s. At BC2F2, a single triple gene homozygote plant (IGS-5-11-5-33) with 92.6% RPG recovery was identified and advanced to BC2F5 by a pedigree method. At BC2F5, the seven best entries were selected, possessing all three resistance genes with high resistance levels against bacterial blight, yield level, and grain quality features equivalent to better than GS. The improved versions of GS will immensely benefit the farmers whose fields are endemic to BB.

2.
Sci Rep ; 11(1): 15825, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34349182

RESUMO

Recent predictions on climate change indicate that high temperature episodes are expected to impact rice production and productivity worldwide. The present investigation was undertaken to assess the yield stability of 72 rice hybrids and their parental lines across three temperature regimes over two consecutive dry seasons using the additive main effect and multiplicative interaction (AMMI), genotype and genotype × environment interaction (GGE) stability model analysis. The combined ANOVA revealed that genotype × environment interaction (GEI) were significant due to the linear component for most of the traits studied. The AMMI and GGE biplot explained 57.2% and 69% of the observed genotypic variation for grain yield, respectively. Spikelet fertility was the most affected yield contributing trait and in contrast, plant height and tiller numbers were the least affected traits. In case of spikelet fertility, grain yield and other yield contributing traits, male parent contributed towards heat tolerance of the hybrids compared to the female parent. The parental lines G74 (IR58025B), G83 (IR40750R), G85 (C20R) and hybrids [G21 (IR58025A × KMR3); G3 (APMS6A × KMR3); G57 (IR68897A × KMR3) and G41 (IR79156A × RPHR1005)] were the most stable across the environments for grain yield. They can be considered as potential genotypes for cultivation under high temperature stress after evaluating under multi location trials.


Assuntos
Adaptação Fisiológica , Irrigação Agrícola/métodos , Interação Gene-Ambiente , Oryza/crescimento & desenvolvimento , Temperatura , Genótipo , Oryza/genética , Fenótipo
3.
PLoS One ; 16(7): e0254526, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34264991

RESUMO

With an objective of mapping novel low soil P (Phosphorus) tolerance loci in the non-Pup1 type donor rice line, Wazuhophek, we screened a recombinant inbred line (RIL) mapping population consisting of 330 lines derived from the cross Wazuhophek x Improved Samba Mahsuri (which is highly sensitive to low soil P) in a plot with low soil P for tolerance associated traits. Molecular mapping with SSR markers revealed a total of 16 QTLs (seven major and nine minor QTLs), which are associated with low soil P tolerance related traits. Interestingly, a QTL hotspot, harbouring 10 out of 16 QTLs were identified on the short arm of chromosome 8 (flanked by the makers RM22554 and RM80005). Five major QTLs explaining phenotypic variance to an extent of 15.28%, 17.25%, 21.84%, 20.23%, and 18.50%, associated with the traits, plant height, shoot length, the number of productive tillers, panicle length and yield, respectively, were located in the hotspot. Two major QTLs located on chromosome 1, associated with the traits, total biomass and root to shoot ratio, explaining 15.44% and 15.44% phenotypic variance, respectively were also identified. Complex epistatic interactions were observed among the traits, grain yield per plant, days to 50% flowering, dry shoot weight, and P content of the seed. In-silico analysis of genomic regions flanking the major QTLs revealed the presence of key putative candidate genes, possibly associated with tolerance.


Assuntos
Locos de Características Quantitativas , Mapeamento Cromossômico , Endogamia , Oryza , Fenótipo , Solo
4.
Sci Rep ; 11(1): 10579, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011978

RESUMO

Genetic improvement of rice for grain micronutrients, viz., iron (Fe) and zinc (Zn) content is one of the important breeding objectives, in addition to yield improvement under the irrigated and aerobic ecosystems. In view of developing genetic resources for aerobic conditions, line (L) × tester (T) analysis was conducted with four restorers, four CMS lines and 16 hybrids. Both hybrids and parental lines were evaluated in irrigated and aerobic field conditions for grain yield, grain Fe and Zn content. General Combining Ability (GCA) effects of parents and Specific Combining Ability (SCA) effects of hybrids were observed to be contrasting for the micronutrient content in both the growing environments. The grain Fe and Zn content for parental lines were negatively correlated with grain yield in both the contrasting growing conditions. However, hybrids exhibited positive correlation for grain Fe and Zn with grain yield under limited water conditions. The magnitude of SCA mean squares was much higher than GCA mean squares implying preponderance of dominance gene action and also role of complementary non-allelic gene(s) interaction of parents and suitability of hybrids to the aerobic system. The testers HHZ12-SAL8-Y1-SAL1 (T1) and HHZ17-Y16-Y3-Y2 (T2) were identified as good combiners for grain Zn content under irrigated and aerobic conditions respectively.

5.
Sci Rep ; 10(1): 21143, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273616

RESUMO

Improved-Samba-Mahsuri (ISM), a high-yielding, popular bacterial blight resistant (possessing Xa21, xa13, and xa5), fine-grain type, low glycemic index rice variety is highly sensitive to low soil phosphorus (P). We have deployed marker-assisted backcross breeding (MABB) approach for targeted transfer of Pup1, a major QTL associated with low soil P tolerance, using Swarna as a donor. A new co-dominant marker, K20-1-1, which is specific for Pup1 was designed and used for foreground selection along with functional markers specific for the bacterial blight resistance genes, Xa21, xa13, and xa5. A set of 66 polymorphic SSR marker were used for the background selection along with a pair of flanking markers for the recombination selection in backcross derived progenies and in BC2F2 generation, 12 plants, which are homozygous for Pup1, all the three bacterial blight resistance genes and possessing agro-morphological traits equivalent to or better than ISM were selected and selfed to produce BC2F3s. They were evaluated in plots with low soil P and normal soil P at ICAR-IIRR, Hyderabad for their low soil P tolerance, and bacterial blight resistance and superior lines were advanced to BC2F6. One of the lines, when tested at multiple locations in India was found promising under both normal as well as low soil P conditions.


Assuntos
Adaptação Fisiológica , Bactérias/patogenicidade , Produtos Agrícolas/fisiologia , Marcadores Genéticos/genética , Oryza/fisiologia , Fósforo/farmacologia , Solo/química , Produtos Agrícolas/genética , Produtos Agrícolas/microbiologia , Genes de Plantas , Índia , Oryza/genética , Oryza/microbiologia , Locos de Características Quantitativas
6.
Plant Soil ; 417(1): 377-392, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31258196

RESUMO

AIMS: Drought is the major constraint to rainfed rice productivity in South Asia, but few reports provide detailed characterization of the soil properties related to drought stress severity in the region. The aim of the study was to provide a compilation of drought breeding network sites and their respective levels of drought stress, and to relate soil parameters with yield reduction by drought. METHODS: This study characterized levels of drought stress and soil nutrient and physical properties at 18 geographically distributed research station sites involved in rice varietal screening in Bangladesh, India, and Nepal, as well as at farmers' fields located near the research stations. RESULTS: Based on soil resistance to penetration profiles, a hardpan was surprisingly absent at about half of the sites characterized. Significant relationships of depth of compaction and yield reduction by drought indicated the effects of soil puddling on susceptibility to cracking, rather than water retention by hardpans, on plant water availability in this region. The main difference between research stations and nearby farmers' fields was in terms of soil compaction. CONCLUSIONS: These results present an initiative for understanding the range of severities of reproductive-stage drought stress in drought-prone rainfed lowland rice-growing areas in South Asia.

7.
J Exp Bot ; 66(7): 1787-99, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25680791

RESUMO

Characterizing the physiological mechanisms behind major-effect drought-yield quantitative trait loci (QTLs) can provide an understanding of the function of the QTLs-as well as plant responses to drought in general. In this study, we characterized rice (Oryza sativa L.) genotypes with QTLs derived from drought-tolerant traditional variety AdaySel that were introgressed into drought-susceptible high-yielding variety IR64, one of the most popular megavarieties in South Asian rainfed lowland systems. Of the different combinations of the four QTLs evaluated, genotypes with two QTLs (qDTY 2.2 + qDTY 4.1 ) showed the greatest degree of improvement under drought compared with IR64 in terms of yield, canopy temperature, and normalized difference vegetation index (NDVI). Furthermore, qDTY 2.2 and qDTY 4.1 showed a potential for complementarity in that they were each most effective under different severities of drought stress. Multiple drought-response mechanisms were observed to be conferred in the genotypes with the two-QTL combination: higher root hydraulic conductivity and in some cases greater root growth at depth. As evidenced by multiple leaf water status and plant growth indicators, these traits affected transpiration but not transpiration efficiency or harvest index. The results from this study highlight the complex interactions among major-effect drought-yield QTLs and the drought-response traits they confer, and the need to evaluate the optimal combinations of QTLs that complement each other when present in a common genetic background.


Assuntos
Oryza/genética , Locos de Características Quantitativas/genética , Secas , Genótipo , Oryza/fisiologia , Fenótipo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Estresse Fisiológico
8.
Funct Plant Biol ; 41(11): 1066-1077, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32481058

RESUMO

To improve yield in upland conditions, near-isogenic lines (NILs) of the major-effect drought yield quantitative trait locus qDTY12.1 in rice (Oryza sativa L.) were developed in the background of the upland variety Vandana. These NILs have shown greater water uptake a larger proportion of lateral roots, and higher transpiration efficiency under drought than Vandana, and one NIL (481-B) was selected as having the highest yield. In this study, the NILs were assessed in two greenhouse and 18 upland field trials for their response to drought and different soil textures. Performance of qDTY12.1 NILs was not affected by soil texture but showed a notable response to drought stress severity. The yield advantage of 481-B over Vandana was highest in field trials with intermittent drought stress, in which the mean trial yield was greater than 0.5tha-1, and in the least favourable well watered trial. The effects of qDTY12.1 on water uptake were most apparent under mild to moderate stress but not in very severe drought or well watered treatments, whereas the lateral root and transpiration efficiency responses were observed under a range of conditions. These results highlight the varying response of qDTY12.1 across upland environments and the complexity of multiple mechanisms acting together to confer an effect on rice yield under drought.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...